

2022

GS-CPU12

GAMESEED 12-BIT CPU ARCHITECTURE

BEEFOK, @BEEFOK, GAMESEED-GX@PROTONMAIL.COM

GS-CPU12 PROGRAMMER’S MODEL

1

TABLE OF CONTENTS

TABLE OF CONTENTS ..Error! Bookmark not defined.

PROGRAMMER’S MODEL .. 3

INSTRUCTION SET LISTING... 5

MACHINE AND USER STATE CONTROL .. 6

BRK IMM3 ... 6

REU (BRK R0) .. 7

JRU RX .. 7

JZ RX, HIMM8 .. 7

MEMORY ACCESS ... 8

LW RX, RY.. 8

LW RX, RY, IMM12.. 8

SW RX, RY.. 8

SW RX, RY, IMM12.. 8

SUBROUTINE/JUMP TABLE FLOW CONTROL .. 9

JR RX, RY.. 9

JR RX, RY, IMM12.. 9

REGISTER TRANSFER ..10

MV RX, RY...10

MV RX, SIMM3 ...10

MV RX, IMM12 ...10

BITWISE SHIFTS ..11

LSL RX, RY...11

LSL RX, UIMM3 ...11

LSR RX, RY...11

LSR RX, UIMM3 ...11

ASR RX, RY...12

ASR RX, UIMM3 ...12

COMPARISON ...13

EQ RX, RY...13

EQ RX, SIMM3 ...13

EQ RX, IMM12 ...13

LR RX, RY...13

GS-CPU12 PROGRAMMER’S MODEL

2

LR RX, SIMM3 ...14

LR RX, IMM12 ...14

GR RX, RY...14

GR RX, SIMM3 ...14

GR RX, IMM12 ...15

ARITHMETIC ...15

ADD RX, RY...15

ADD RX, UIMM3 ...15

ADD RX, IMM12 ...15

SUB RX, RY...16

SUB RX, UIMM3 ...16

SUB RX, IMM12 ...16

RSB RX, RY...16

RSB RX, UIMM3 ...17

RSB RX, IMM12 ...17

BITWISE LOGIC ...18

AND RX, RY ..18

AND RX, SIMM3 ...18

AND RX, IMM12 ...18

OR RX, RY...18

OR RX, SIMM3 ...19

OR RX, IMM12 ...19

XOR RX, RY...19

XOR RX, SIMM3 ...19

XOR RX, IMM12 ...20

GS-CPU12 PROGRAMMER’S MODEL

3

PROGRAMMER’S MODEL

Every instruction involves 0 to 2 general purpose registers. These registers are labeled R0-R7 and

have been allocated in the programmer’s model this way:

NAME ALIAS DESCRIPTION

R0 ZR Always zero value

R1 AS Assembler Use / Return Address

R2 AX Subroutine Return Value / General Purpose

R3 BX Local Variable / General Purpose

R4 CX Local Variable / General Purpose

R5 DX Local Variable / General Purpose

R6 BP Base (Frame) Pointer

R7 SP Stack Pointer

All registers can be used however you want, but the ‘best use’ organization is summarized above.

Outside of the general purpose registers used in instructions, there are also internal instructions that

are operated on in other ways.

NAME DESCRIPTION

PC Program Counter, location of the current instruction to be executed

RA Return Address, location of next instruction to be executed in User Mode

IR Interrupt Register, current pending interrupts, masks, and enables.

IW Instruction Word, holds the currently decoded instruction, and also holds
onto the next instruction to be executed during a stall/memory access
operation.

These registers are handled by the CPU itself. The program counter is operated on with the

flow control instructions. The return address is updated whenever the CPU jumps to machine

mode, which allows the machine to return back to user mode after it is done. The interrupt register

holds the current status of external interrupts, as well as masks and CPU mode (0 = machine mode,

1 = user mode). This register can only be operated on by machine mode.

Invisible to the programmer, the CPU has a three-stage pipeline, separated into Fetch,

Decode, and Execute stages.

In the fetch stage, the CPU requests access to the external bus. It can read and write to

the bus and also outputs the current state of the CPU. The address bus is 12-bit, the data bus is 12-

bit, and it also includes if it is in user-mode and if this is a code memory request vs a data memory

request.

GS-CPU12 PROGRAMMER’S MODEL

4

In the decode stage, the CPU decodes the currently accessed bus word as an instruction,

or, depending on the current state of the CPU, whether it requests a memory word from the bus.

If the CPU is in user mode, and there is an external interrupt request, a BRK instruction is decoded

instead of the next instruction to be decoded. The decode stage also handles state changes such

as user mode switch, interrupt masking, user return address updating.

In the execute stage, the CPU executes the instruction that has been presented to it by

the decode stage. It also updates the bus actions to be used in the fetch stage. In this stage, the

register file reads out two registers (register X and register Y), and whatever operation needs to be

handled happens and the result is written back to either the register file, the program counter, or

to the bus. The execute stage is also responsible for updating the program counter.

Most instructions are executed in a single cycle, however, memory operations take three cycles

to complete, and the control flow instructions take two cycles. ALU instructions take two cycles if

they use a 12-bit operand in the place of register Y, and one cycle if they use register Y or a

small immediate as the operand.

NAME DESCRIPTION clocks / instruction

LW/SW Memory access 3

BRK/JZ/JR Control Flow 2

ALU, 12-bit IMM ALU operation 2

ALU, RY or 3-bit IMM ALU operation 1

GS-CPU12 INSTRUCTION SET LISTING

5

INSTRUCTION SET LIST ING

The CPU has 18 instructions with various addressing modes for most instructions. Each set of

instructions will be organized by their use.

This is the format of an entry:

NAME <OPERANDS, …>

Instruction word: (0000 0000 0000)

<Description of instruction>

Uses: <Where can it be used>

Action:

<Description of actions taken by CPU when executing this instruction>

If the instruction word requires two words, it is represented as: (0000 0000 0000 IIII IIII IIII)

GS-CPU12 INSTRUCTION SET LISTING

6

MACHINE AND USER STATE CONTROL

BRK IMM3

Instruction word: (0XXX 0000 0000)

In user mode this instruction is known as BRK (break from user mode), which is the system call and

interrupt handling mechanism. On entry of machine mode, all external interrupts are masked and

cannot be unmasked. In order to handle external interrupts, machine mode must jump back to

user mode as quickly as possible.

An external interrupt request pushes a BRK instruction into the pipeline preventing a new instruction

from being placed into the pipeline. On entry of an interrupt, the user code address that would

have been executed is placed into the User Program Counter register (known as UPC from now

on.). In machine mode, the BRK instruction can then be used to return back to user mode.

There are 8 total interrupts that can be handled. These interrupts are handled with decreasing

priority where interrupt 0 is highest priority compared to interrupt 7, which is the lowest priority.

Each interrupt has 8 words allocated to it in machine mode code space.

Interrupt ID description address: begin end

irq 0 (reset) reset (non-maskable) 0x000 0x007

irq 1
(external)

typically for external
interrupts

0x008 0x00F

irq 2 0x010 0x017

irq 3 0x018 0x01F

irq 4 0x020 0x027

irq 5 0x028 0x02F

irq 6 0x030 0x037

irq 7 (usr
reqs)

user requests 0x038 0x03F+

Typically, these interrupt handlers will be used to jump to a specific subroutine allocated for it

further in the machine mode code space. However, they also have enough space to store a few

important registers such as the stack pointer and frame pointer.

Uses: system reset, handle an external event, user system call, force/spoof external event from

user mode.

Action:

if USER: PC = IRQ.X, UPC = PC, USER = 0

GS-CPU12 INSTRUCTION SET LISTING

7

REU (BRK R0)

Instruction word: (0000 0000 0000)

To return to user mode, machine mode needs to execute a BRK instruction. In machine mode, the

BRK instruction has another name, known either as JRU (jump to register with user address) or REU

(return to user mode with UPC). It can still be called BRK, but for verbosity and the fact that the

source X parameter is handled differently, it makes it easier to understand.

Uses: Return to user mode

Action:

if not USER: PC = UPC, USER = 1

JRU RX

Instruction word: (0XXX 0000 0000)

If the RX field is r0, it will use UPC to jump back to where the next user code address would have

been fetched and executed. Once back in user mode, external interrupts can be requested and

executed again. If the RX field is not r0, and is instead r1-r7, it will use the value in the register as

the user code address to jump to. Once back in user mode, external interrupts can be requested

and executed again.

Uses: Context switching, user mode reset, trusted user-handled interrupt/device driver.

Instruction word: (0XXX 0000 0000)

Action:

if not USER: PC = RX, USER = 1

JZ RX, HIMM8

Instruction word: (0XXX HHHH HHHH)

If the HIMM immediate field is not 00000000, this is decoded as a jump on zero conditional branch

instead of a BRK instruction. This is the only conditional instruction and can be combined with the

comparison instructions in order to handle control flow. The takes the value stored in register X,

compares it to zero, and jumps to the 8-bit PC-relative immediate, which gives jump range from -

127 to +128 words relative to the next instruction. The reason why a JZ with an HIMM immediate

field of 00000000 is a BRK instruction is because it would otherwise be decoded as a NOP

instruction, which there are already many ways to achieve.

Action:

if RX == 0: PC = PC + SIMM8

GS-CPU12 INSTRUCTION SET LISTING

8

MEMORY ACCESS

LW RX, RY

Instruction word: (1XXX 1YYY 0000)

Load a word from memory with the address calculated from the value stored in register Y and

stores the word from memory into register X.

Access memory using register X, stack pop

Action:

RX = MEM[RY]

LW RX, RY, IMM12

Instruction word: (1XXX 0YYY 0000 IIII IIII IIII)

Loads a word from memory with the address calculated from the following instruction word

decoded as a 12-bit immediate added to value stored in register Y and stores the world from

memory into register X.

Action:

RX = MEM[RY + IMM12]

SW RX, RY

Instruction word: (1XXX 1YYY 0001)

Stores the word from register X into memory with the address calculated from the stored value in

register Y.

Action:

MEM[RY] = RX

SW RX, RY, IMM12

Instruction word: (1XXX 0YYY 0001 IIII IIII IIII)

GS-CPU12 INSTRUCTION SET LISTING

9

Stores the word from register X into memory with the address calculated from the following

instruction word decoded as a 12-bit immediate added to value stored in register Y.

Action:

MEM[RY + IMM12] = RX

SUBROUTINE/JUMP TABLE FLOW CONTROL

JR RX, RY

Instruction word: (1XXX 1YYY 0010)

Jump to the address calculated from the value stored in register Y and store the instruction address

after this instruction into register X. This instruction provides the system with the ability to jump to an

indirect subroutine, and return from a subroutine.

Action:

PC = RY, RX = PC

JR RX, RY, IMM12

Instruction word: (1XXX 0YYY 0010 IIII IIII IIII)

Jump to the address calculated from the value stored in register Y added to the following

instruction word decoded as a 12-bit immediate and store instruction address after the immediate

instruction word into register X. This instruction provides the system with the ability to jump to

subroutine, use jump tables, and to return from a subroutine.

Action:

PC = RY + IMM12, RX = PC

GS-CPU12 INSTRUCTION SET LISTING

10

REGISTER TRANSFER

MV RX, RY

Instruction word: (1XXX 1YYY 0011)

Store the value from register Y into register X.

Action:

RX = RY

MV RX, SIMM3

Instruction word: (1XXX 0YYY 0011)

Store the small signed 3-bit immediate into register X.

Action:

RX = SIMM3

MV RX, IMM12

Instruction word: (1XXX 1YYY 0011 IIII IIII IIII)

Store the following instruction word decoded as a 12-bit immediate into register X.

Action:

RX = IMM12

GS-CPU12 INSTRUCTION SET LISTING

11

BITWISE SHIFT

LSL RX, RY

Instruction word: (1XXX 1YYY 0100)

Compute the logical shift left with the values stored in register X and Y, then store the result into

register X. The lower 4-bits of register Y is the step amount is in range 0-15, where anything above

11 is just pure zero extension. The upper 8-bits of register Y are ignored.

Action:

RX = RX LSL RY

LSL RX, UIMM3

Instruction word: (1XXX 0YYY 0100)

Compute the logical shift right with the values stored in register X and the ‘shift’ immediate Y, then

store the result into register X. The shift immediate value from 1-7 are 1 to 7-bit shift amounts, shift

immediate 0 is an 8-bit shift amount.

Action:

RX = RX LSL BIMM3

LSR RX, RY

Instruction word: (1XXX 1YYY 0101)

Compute the logical shift right with the values stored in register X and Y, then store the result into

register X. The lower 4-bits of register Y is the step amount is in range 0-15, where anything above

11 is just pure zero extension. The upper 8-bits of register Y are ignored.

Action:

RX = RX LSR RY

LSR RX, UIMM3

Instruction word: (1XXX 0YYY 0101)

GS-CPU12 INSTRUCTION SET LISTING

12

Compute the logical shift right with the values stored in register X and the ‘shift’ immediate Y,

then store the result into register X. The shift immediate value from 1-7 are 1 to 7-bit shift amounts,

shift immediate 0 is an 8-bit shift amount.

Action:

RX = RX LSR BIMM3

ASR RX, RY

Instruction word: (1XXX 0YYY 0110)

Compute the arithmetic shift right with the values stored in register X and Y, then store the result

into register X. The lower 4-bits of register Y is the step amount is in range 0-15, where anything

above 11 is just pure sign extension. The upper 8-bits of register Y are ignored.

Action:

RX = RX ASR RY

ASR RX, UIMM3

Instruction word: (1XXX 0YYY 0110)

Compute the arithmetic shift right with the values stored in register X and the ‘shift’ immediate Y,

then store the result into register X. The shift immediate value from 1-7 are 1 to 7-bit shift amounts,

shift immediate 0 is an 8-bit shift amount.

Action:

RX = RX ASR BIMM3

GS-CPU12 INSTRUCTION SET LISTING

13

COMPARISON

EQ RX, RY

Instruction word: (1XXX 1YYY 0111)

If the value stored in register X is equal to the value stored in register Y, store 1 i nto register X,

otherwise store 0 into register X.

Action:

RX = RX == RY ? 0x001 : 0x000

EQ RX, SIMM3

Instruction word: (1XXX 0YYY 0111)

If the value stored in register X is equal to the small signed 3-bit immediate, then store 1 into register

X, otherwise store 0 into register X.

Action:

RX = RX == SIMM3? 0x001 : 0x000

EQ RX, IMM12

Instruction word: (1XXX 0YYY 0111 IIII IIII IIII)

If the value stored in register X is equal to the following instruction word decoded as a 12-bit

immediate, then store 1 into register X, otherwise store 0 into register X.

Action:

RX = RX == IMM12? 0x001 : 0x000

LR RX, RY

Instruction word: (1XXX 1YYY 1000)

If the value stored in register X is less than the value stored in register Y, store 1 into register X,

otherwise store 0 into register X.

Action:

GS-CPU12 INSTRUCTION SET LISTING

14

RX = RX < RY ? 0x001 : 0x000

LR RX, SIMM3

Instruction word: (1XXX 0YYY 1000)

If the value stored in register X is less than the small signed 3-bit immediate, then store 1 into register

X, otherwise store 0 into register X.

Action:

RX = RX < SIMM3? 0x001 : 0x000

LR RX, IMM12

Instruction word: (1XXX 0YYY 1000 IIII IIII IIII)

If the value stored in register X is less than the following instruction word decoded as a 12-bit

immediate, then store 1 into register X, otherwise store 0 into register X.

Action:

RX = RX < IMM12? 0x001 : 0x000

GR RX, RY

Instruction word: (1XXX 1YYY 1001)

If the value stored in register X is greater than the value stored in register Y, store 1 into register X,

otherwise store 0 into register X.

Action:

RX = RX > RY ? 0x001 : 0x000

GR RX, SIMM3

Instruction word: (1XXX 0YYY 1001)

If the value stored in register X is greater than the small signed 3-bit immediate, then store 1 into

register X, otherwise store 0 into register X.

Action:

GS-CPU12 INSTRUCTION SET LISTING

15

RX = RX > SIMM3? 0x001 : 0x000

GR RX, IMM12

Instruction word: (1XXX 0YYY 1001 IIII IIII IIII)

If the value stored in register X is greater than the following instruction word decoded as a 12-bit

immediate, then store 1 into register X, otherwise store 0 into register X.

Action:

RX = RX > IMM12? 0x001 : 0x000

ARITHMETIC

ADD RX, RY

Instruction word: (1XXX 1YYY 1010)

Compute the addition with the values stored in register X and Y, then store the result into register

X.

Action:

RX = RX + RY

ADD RX, UIMM3

Instruction word: (1XXX 1YYY 1010)

Compute the addition with the value stored in register X and the small unsigned 3-bit immediate,

then store the result into register X.

Action:

RX = RX - UIMM3

ADD RX, IMM12

Instruction word: (1XXX 1YYY 1010 IIII IIII IIII)

Compute the addition with the value stored in register X and the following instruction word

decoded as a 12-bit immediate, then store the result into register X.

GS-CPU12 INSTRUCTION SET LISTING

16

Action:

RX = RX + IMM12

SUB RX, RY

Instruction word: (1XXX 1YYY 1011)

Compute the addition with the values stored in register X and Y, then store the result into register

X.

Action:

RX = RX + RY

SUB RX, UIMM3

Instruction word: (1XXX 1YYY 1011)

Compute the subtraction with the value stored in register X and the small unsigned 3-bit

immediate, then store the result into register X.

Action:

RX = RX - UIMM3

SUB RX, IMM12

Instruction word: (1XXX 1YYY 1011 IIII IIII IIII)

Compute the subtraction with the value stored in register X and the following instruction word

decoded as a 12-bit immediate, then the result into register X.

Action:

RX = RX - IMM12

RSB RX, RY

Instruction word: (1XXX 1YYY 1100)

Compute the ‘reverse’ subtraction with the values stored in register X and Y, then store the result

into register X.

GS-CPU12 INSTRUCTION SET LISTING

17

Action:

RX = RY - RX

RSB RX, UIMM3

Instruction word: (1XXX 1YYY 1100)

Compute the ‘reverse’ subtraction with the value stored in register X and the small unsigned 3-bit

immediate, then store the result into register X.

Action:

RX = UIMM3- RX

RSB RX, IMM12

Instruction word: (1XXX 1YYY 1100 IIII IIII IIII)

Compute the ‘reverse’ subtraction with the value stored in register X and the following instruction

word decoded as a 12-bit immediate, then store the result into register X.

Action:

RX = IMM12 - RX

GS-CPU12 INSTRUCTION SET LISTING

18

BITWISE LOGIC

AND RX, RY

Instruction word: (1XXX 1YYY 1101)

Compute the bitwise-and with the values stored in register X and Y, then store the result into register

X.

Action:

RX = RX AND RY

AND RX, SIMM3

Instruction word: (1XXX 1YYY 1101)

Compute the bitwise-and with the value stored in register X and the small signed 3-bit immediate,

then store the result into register X.

Action:

RX = RX AND SIMM3

AND RX, IMM12

Instruction word: (1XXX 1YYY 1101 IIII IIII IIII)

Compute the bitwise-and with the value stored in register X and the following instruction word

decoded as a 12-bit immediate, then store the result into register X.

Action:

RX = RX AND IMM12

OR RX, RY

Instruction word: (1XXX 1YYY 1110)

Compute the bitwise-or with the values stored in register X and Y, then store the result into register

X.

Action:

GS-CPU12 INSTRUCTION SET LISTING

19

RX = RX OR RY

OR RX, SIMM3

Instruction word: (1XXX 1YYY 1110)

Compute the bitwise-or with the value stored in register X and the small signed 3-bit immediate,

then store the result into register X.

Action:

RX = RX OR SIMM3

OR RX, IMM12

Instruction word: (1XXX 1YYY 1110IIII IIII IIII)

Compute the bitwise-or with the value stored in register X and the following instruction word

decoded as a 12-bit immediate, then store the result into register X.

Action:

RX = RX OR IMM12

XOR RX, RY

Instruction word: (1XXX 1YYY 1111)

Compute the bitwise exclusive-or with the values stored in register X and Y, then store the result

into register X.

Action:

RX = RX XOR RY

XOR RX, SIMM3

Instruction word: (1XXX 1YYY 1111)

Compute the bitwise exclusive-or with the value stored in register X and the small signed 3-bit

immediate, then store the result into register X.

Action:

GS-CPU12 INSTRUCTION SET LISTING

20

RX = RX XOR SIMM3

XOR RX, IMM12

Instruction word: (1XXX 1YYY 1111 IIII IIII IIII)

Compute the bitwise exclusive-or with the value stored in register X and the following instruction

word decoded as a 12-bit immediate, then store the result into register X.

Action:

RX = RX XOR IMM12

GS-CPU12 EXAMPLE USAGE OF INSTRUCTIONS

21

EXAMPLE USAGE OF INSTRUCTIONS

Listed below are examples using CPU12 assembly as well pseudo-instruction definitions and

usage.

STACK OPERATIONS

POP RX: ; POP RX FROM STACK

 SW RX, SP

 SUB SP, 1

PSH RX: ; PUSH RX TO STACK

 ADD SP, 1
 LW RX, SP

DUP: ; DUPLICATE TOP STACK ENTRY

 POP AS
 PSH AS
 PSH AS

SWAP: ; SWAP TWO TOP STACK ENTRIES
 POP AX

 POP BX

 PSH AX
 PSH BX

FUNCTION OPERATIONS

Function prologue and epilogue can be handled as follows:

ENTER #Y:

 PSH AS ; ADD START OF FUNCTION, RETURN ADDRESS IS IN AS
 PSH BP ; PUSH FRAME POINTER

 MV BP, SP ; SET FRAME POINTER TO NEW FRAME (STACK POINTER)
 SUB SP, #Y ; MAKE ROOM FOR Y LOCAL VARIABLES

EXIT:

 MV SP, BP ; SET STACK POINTER TO PREVIOUS FRAME (FRAME POINTER)

 POP BP ; POP FRAME POINTER FROM STACK

 POP AS ; POP RETURN ADDRESS FROM STACK

 JR AS ; RETURN FROM SUBROUTINE

LV RX, #Y: ; LOAD LOCAL VARIABLE Y INTO RX

 LW RX, BP, #Y

SV RX, #Y: ; STORE RX TO LOCAL VARIABLE Y

 SW RX, BP, #Y

GS-CPU12 EXAMPLE USAGE OF INSTRUCTIONS

22

ARITHMETIC OPERATIONS

24-bit ADD (5 ops, 7 ops if carry out):

ADD24 AX, BX, CX, DX:

ADD BX, DX ; ADD LOWER WORD

MV AS, BX ; COMPUTE CARRY

LR AS, DX ; AS = CARRY IN
ADD AX, AS ; ADD CARRY IN

ADD AX, CX ; ADD UPPER WORD

MV AS, AX ; COMPUTE CARRY (optional)
LR AS, CX ; AS = CARRY OUT (optional)

	PROGRAMMER’S MODEL
	INSTRUCTION SET LISTING
	NAME <OPERANDs, …>
	MACHINE AND USER STATE CONTROL
	BRK IMM3
	REU (BRK R0)
	JRU RX
	JZ RX, HIMM8

	MEMORY ACCESS
	LW RX, RY
	LW RX, RY, IMM12
	SW RX, RY
	SW RX, RY, IMM12

	SUBROUTINE/JUMP TABLE FLOW CONTROL
	JR RX, RY
	JR RX, RY, IMM12

	REGISTER TRANSFER
	MV RX, RY
	MV RX, SIMM3
	MV RX, IMM12

	BITWISE SHIFT
	LSL RX, RY
	LSL RX, UIMM3
	LSR RX, RY
	LSR RX, UIMM3
	ASR RX, RY
	ASR RX, UIMM3

	COMPARISON
	EQ RX, RY
	EQ RX, SIMM3
	EQ RX, IMM12
	LR RX, RY
	LR RX, SIMM3
	LR RX, IMM12
	GR RX, RY
	GR RX, SIMM3
	GR RX, IMM12

	ARITHMETIC
	ADD RX, RY
	ADD RX, UIMM3
	ADD RX, IMM12
	SUB RX, RY
	SUB RX, UIMM3
	SUB RX, IMM12
	RSB RX, RY
	RSB RX, UIMM3
	RSB RX, IMM12

	BITWISE LOGIC
	AND RX, RY
	AND RX, SIMM3
	AND RX, IMM12
	OR RX, RY
	OR RX, SIMM3
	OR RX, IMM12
	XOR RX, RY
	XOR RX, SIMM3
	XOR RX, IMM12

	EXAMPLE USAGE OF INSTRUCTIONS
	Stack operations
	FUNCTION operations
	ARITHMETIC OPERATIONS

